
Remote Control of iOS Devices via Accessibility Features
Nikola Lukić∗

University of Southern California
Los Angeles, USA
nlukic@usc.edu

Saghar Talebipour∗
University of Southern California

Los Angeles, USA
talebipo@usc.edu

Nenad Medvidović
University of Southern California

Los Angeles, USA
neno@usc.edu

ABSTRACT
This paper presents an approach for remotely accessing and con-
trolling mobile apps by leveraging a mobile platform’s publicly ex-
ported accessibility features. This approach is implemented in a tech-
nique and accompanying tool called AirMochi.While AirMochi is
designed to be platform-independent, our current implementation
has focused on iOS, the significantly more challenging of the two
dominant mobile platforms, for which access to apps’ source code
is generally not possible. We show that AirMochi places no restric-
tions on apps it can “plug into” and control, is able to handle a va-
riety of scenarios, and imposes a negligible performance overhead.

ACM Reference Format:
Nikola Lukić, Saghar Talebipour, and Nenad Medvidović. 2020. Remote
Control of iOS Devices via Accessibility Features. In 2020 Workshop on
Forming an Ecosystem Around Software Transformation (FEAST ’20), No-
vember 13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3411502.3418427

1 INTRODUCTION
The emergence of mobile computing platforms has resulted in mil-
lions of apps that provide services spanning virtually every facet of
human need and endeavor. In part, this is because the providers of
mobile platforms—Google’s Android andApple’s iOSmost notably—
have tried to make app building easier for an inexperienced devel-
oper. This has given consumers a previously unimaginable range
of options at relatively low costs. However, it has also introduced
new challenges, both for the consumers and for software devel-
opers. Namely, individual apps can behave in unexpected ways,
include counter-intuitive features, have a variety of bugs, exhibit
unpredictable performance, be susceptible to security breaches, and
so on. This is magnified by the expectation that apps on a mobile
device will interact, not only with back-end servers, but also with
one another. The very flexibility of the mobile platforms is thus
also a key source of complexity developers must address.

∗The authors have contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FEAST ’20, November 13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8089-8/20/11. . . $15.00
https://doi.org/10.1145/3411502.3418427

Existing work has looked at different facets of this problem. A
large number of techniques have focused on issues such as testing
apps’ behaviors [22], analyzing their performance [17], identify-
ing [13] and patching [18] their vulnerabilities, recovering their
designs [20], and reverse-engineering their implementations [20].
Of special interest to the work described in this paper are techniques
for remotely accessing and/or controlling apps running on a device.
Examples include app record-and-replay [16], UI event generation
for apps running in an emulator [21], use-case scenario extraction
from screen recordings [14], and application of OCR and computer-
vision techniques to automatically identify GUI widgets [20].

These techniques have invariably targeted Android, an open
platform that provides access to low-level details of an installed app
and its execution substrate. Furthermore, many of these techniques
assume access to at least some parts of an app’s source code-level
information. For instance, RERAN [16] uses Android’s getevent and
sendevent tools [8] to capture and regenerate UI events, while Mobi-
Play [21] leverages Android emulators to run applications remotely.

By contrast, iOS is a closed platform and is less amenable to such
analyses: no analogous APIs, tools, or emulators exist for it.1 Two so-
lutions have been typically adopted on iOS: override certain kernel-
level restrictions by “jailbreaking” a device (e.g., [1]) or leverage
low-level protocols currently exposed by Apple. However, jailbreak-
ing an iOS device introduces security vulnerabilities and results in
platform and app versions that are considered illegal by Apple [15].
On the other hand, techniques that rely on low-level protocols
generally rely on the XCUITest black-box testing framework, and
their capabilities are dependent on APIs whose public access is not
officially sanctioned by Apple and may be disabled in a future iOS
version. For example, this is the case with Facebook’s WebDriverA-
gent [4], an iOS specific implementation of W3C’s WebDriver [12],
a remote device control interface. Additionally, both of these ap-
proaches are complex and impose significant engineering burden.
This is also likely the case with commercial tools that target iOS,
such as Eggplant [7] , but those tools are based on proprietary tech-
nologies, preventing their analysis as well as necessary extensions.

This paper introducesAirMochi, a technique and accompanying
tool for remotely accessing and controlling mobile apps. AirMochi
only leverages a mobile platform’s publicly exported accessibility
features. Such features are commonly provided to facilitate the use
of a device by persons with vision, hearing, and other physical dis-
abilities. AirMochi exploits these features to “plug into” a device

1Apple does provide iOS simulators for MacOS. However, due to differences in hard-
ware architectures between iOS (ARM-based) and MacOS (Intel-based) devices, it is
impossible to run iOS apps acquired through the AppStore on simulators; special
simulator-based builds of those apps are required.

https://doi.org/10.1145/3411502.3418427
https://doi.org/10.1145/3411502.3418427

via an emulated mouse and keyboard, and then simply use the apps
on the device in the usual manner. In other words, AirMochi does
not rely on the availability of a mobile app’s code and only assumes
that the app can be installed and run on a device.

AirMochi records the video stream of the device’s UI during the
usage, while capturing and time-stamping UI events. This forms a
critical foundation for a range of downstream capabilities: accurate
replay of any app’s usage, back-end analysis of the app’s user-
facing behavior, extraction of key use-case scenarios, automated
widget recognition and reconstruction of app GUIs, streamlining
of third-party app testing, automated construction of accurate app-
behavior models, and even introduces the possibility of automatic
reimplementation of the app itself.

While AirMochi’s implementation currently targets iOS, its de-
sign can be applied to Android or another platform by making mod-
ifications that are isolated within AirMochi’s individual compo-
nents. We demonstrate AirMochi’s key properties of (1) effective-
ness, (2) efficiency, (3) modularity, and (4) extensibility. Specifically,
we show that AirMochi places no restrictions on apps and is able
to handle a variety of representative scenarios. We also show that
AirMochi imposes a negligible performance overhead even though
we have not attempted to optimize its current implementation.

Section 2 provides an overview of AirMochi’s intended use by
way of a representative high-level scenario. Section 3 describes
AirMochi’s architecture and provides details of its six principal
components. Section 4 details AirMochi’s current implementa-
tion. Section 5 describes our preliminary evaluation of AirMochi.
Section 6 discusses on-going work and concludes the paper.

2 OVERVIEW
Themanner inwhichAirMochi is intended to be used is reflected in
Figure 1.AirMochi’s user is able to start a remote-execution session
in the User-Facing Application, e.g., on a desktop computer (bottom-
right). During the session, the user is able to remotely control a
dedicated Mobile Device (bottom-left). Each session consists of a
stream of user-generated UI events flowing from the User-Facing Ap-
plication to the Mobile Device, and video stream comprising device
screens flowing in the opposite direction.

The user is able to seamlessly control the Mobile Device, us-
ing only the input peripheral devices on her side (e.g., mouse and
keyboard). Once the user generates a particular UI event in the
User-Facing Application, that event is routed to and executed on the
dedicatedMobile Device. The resulting video stream is captured from
the dedicated device in the form of a sequence of device-screens
and displayed, remotely, on the user’s side.

During a remote-execution session, the user can opt to record
certain scenarios of interest. Both the device-screen video stream
and UI event stream are persisted by AirMochi during the record-
ing. AirMochi’s user can analyze the event and screen streams
side-by-side, e.g., to debug an app. The user can alternatively replay
usage scenarios by re-executing the recorded UI events on the Mo-
bile Device. The UI event streams are persisted as logs containing
coordinates which couple the UI events to specific areas of the
device screen. AirMochi translates these coordinate-based logs to
GUI-based level scenarios. This translation makes it possible for the
user to replay the recorded scenario on any type of device since the

Screens

Events

AirMochi

Start Recording

Stop RecordingMouse Down, x = 24%, y = 8%

User-Facing Application

Utility Server

Start Recording

Stop RecordingMouse Down, x = 24%, y = 8%
Start Recording

Stop Recording

Internal
Storage

Screens Events

Event
Transmission

Facilitator

Event
Transmission

Facilitator

Screen
Transmission

Facilitator

Screen
Transmission

Facilitator

Screen
Transmission

Facilitator

Event
Generator

Screen
Transmitter

Event
Transmission

Facilitator

Events Screens

Mobile Device

Replay

Get Scenario Log

Remote Control

Testing and Analysis

Event Sequence
Translator Model Extractor

Event Logs

High-level Events

UI Layout

Screenshot

Figure 1: AirMochi’s design. The Event Generator and Screen
Transmitter components can reside on the Mobile Device
or be deployed on a separate node. The dashed lines from
theMobile Device to theModel Extractor and Event Sequence
Translator components are intended to indicate that this in-
formation can be obtained in different ways. In our current
implementation, we use the Appium [6] third-party library.

recording is no longer dependent on a specific hardware. The re-
play functionality allows rapidly bringing a mobile app to a specific
execution state on any device, enabling further analysis, and testing
of the app. The video of the resulting replay and the previously
recorded video can also be compared to evaluate the correctness of
the replay, to assess whether a given app has changed, to analyze
the effects of any server-side changes on the app, etc. AirMochi
also incrementally builds a partial behavioral model of the app
that has been remotely executed. The generated model shows the
transitions between different possible UI states of an application
and can be used “downstream” for further app analysis and testing.

3 AIRMOCHI’s DESIGN
Three of AirMochi’s over-arching design objectives are efficiency,
modularity, and extensibility.AirMochi’s design is primarily driven
by efficiency. To be usable in practice, AirMochi must support a
realistic usage experience in which there is no perceptible perfor-
mance degradation compared to the direct use of a mobile device.
Our solution must therefore minimize the latency when transmit-
ting event streams and device-screen video streams. This is reflected
in AirMochi’s design in (1) the limited number of software compo-
nents interceding between the user and the mobile device, thereby
avoiding connection and/or processing overloads; (2) the dedicated,
separate instances of key components for each execution session, as
detailed below; and (3) theminimal onlinemanipulation of the event
and device-screen streams between their sources and destinations.

Another design objective for AirMochi is modularity. As dis-
cussed above, there are several one-off solutions for recording and
replaying app executions. Although AirMochi currently targets
iOS devices by leveraging their accessibility interfaces in specific

ways (as further detailed in Section 4), our eventual goal is to en-
able combining different approaches for screen streaming, user-side
event generation, and device control. To this end, AirMochi com-
prises six top-level modules, as shown in Figure 1: (1) User-Facing
Application, (2) Utility Server , (3) Event Generator , (4) Screen Trans-
mitter , (5) Event Sequence Translator , and (6)Model Extractor . This al-
lows us to add event generation and screen sharing solutions for dif-
ferent platforms quickly, without significant engineering overhead.

This leads to extensibility as the final principal design objective
for AirMochi. In addition to leveraging AirMochi’s modularity in
order to extend it to different platforms as discussed above, its plug-
gable design makes it a suitable research foundation for easily intro-
ducing additional data collection and processing tools. By plugging
in components that implement the desired capabilities, AirMochi
will allow us perform downstream analyses such as runtime track-
ing of unwanted app scenarios, mapping of UI events to network
requests, detection of information-leaks on a mobile device, etc.

We now describe each of AirMochi’s components from Figure 1.
We divide the components into two subsets according to their pri-
mary purpose: (1) the core capabilities required for remote control
of mobile devices and (2) the advanced, “downstream” features for
mobile app testing and analysis. We describe each in turn.

3.1 Remote Control of Mobile Devices
AirMochi’s support for remotely controlling devices relies on four
components: User-Facing Application, Utility Server , Event Genera-
tor , and Screen Transmitter . We describe each in turn.

User-Facing Application
Each AirMochi user is provided a separate instance of the User-
Facing Application. During the execution of a user session, the
User-Facing Application receives a device-screen video stream from
the Utility Server , while capturing and streaming the user-generated
UI events in the opposite direction. The User-Facing Application is in
charge of notifying the Utility Server of the start and end of stream
recording. Finally, when replaying previously recorded sessions,
the User-Facing Application only displays theMobile Device’s screen
video stream, without attempting to capture user events.

Utility Server
The Utility Server is the main orchestrator of remote device con-
trol. It is in charge of establishing and persisting the connections
between users and devices. As shown in Figure 1, the Utility Server
itself consists of three components: (1) Screen Transmission Facilita-
tor , (2) Event Transmission Facilitator , and (3) Internal Storage.

The Screen Transmission Facilitator is in charge of establishing
the video stream from a Mobile Device and its corresponding User-
Facing Application instance. As discussed previously, video streams
are captured as sequences of device-screens. The Screen Transmission
Facilitator may need to modify the stream to accommodate specific
User-Facing Application requirements.

The Event Transmission Facilitator also establishes a connection
between a Mobile Device and its corresponding User-Facing Appli-
cation, but is in charge of transmitting user events from AirMochi
to the device. Furthermore, the Event Transmission Facilitator is in
charge of re-executing recorded execution scenarios.

Finally, the Internal Storage component is used by both facilitator
components. The Screen Transmission Facilitator uses it to store

screen frames from the device’s video stream. The Event Transmis-
sion Facilitator uses it to read in the scenario that is to be replayed
and to persist the UI event log when recording an ongoing scenario.

Event Generator
The Event Generator supplies UI events to the physically connected
Mobile Device. It receives each UI event using an internal AirMochi
representation, translates the event to the device-specific represen-
tation, and initiates the event’s execution on the connected device.
As discussed above, to support efficiency, each device is assigned a
dedicated instance of the Event Generator component. This compo-
nent can reside on the device itself, or it can be deployed remotely.

Screen Transmitter
In response to the execution of UI events, the Screen Transmitter be-
gins capturing theMobile Device’s video frames as screen sequences
and pushing them to the Utility Server via the connection previously
established by the Screen Transmission Facilitator . As with the Event
Generator , there is one instance of Screen Transmitter per device,
and it can reside on the device itself or be deployed remotely.

3.2 Testing and Analysis of Mobile Apps
Another goal of AirMochi is to use the data obtained via remote
control for a range of downstream analyses. For example, we can
integrate the Appium testing framework [6] with AirMochi. Air-
Mochi’s current support for testing and analysis relies on two addi-
tional components: Event Sequence Translator and Model Extractor .

Event Sequence Translator
The Event Sequence Translator is responsible for translating Air-
Mochi’s hardware-dependent recording logs, coupled to specific
coordinates on the mobile device screen, to event sequences in a UI
element-based representation. While useful, low-level events im-
pede the reusability of recorded scenarios by tying them to specific
hardware characteristics (e.g., screen size). The new representation
is hardware-independent and can be replayed on devices different
from the device on which the original session was executed.

The logs recorded by AirMochi contain three types of low-level
events obtained from the Event Generator component:

𝐿𝑎 : mousePress(x, y, timestamp)

𝐿𝑏 : mouseRelease(x, y, timestamp)

𝐿𝑐 : keyboardPress(value)
In order to translate these to hardware-independent events, we

define a corresponding set of high-level UI events as follows:
𝐻𝑎 : click(x, y, timestamp)

𝐻𝑏 : longClick(x, y, timestamp)

𝐻𝑐 : swipe(startX, startY, endX, endY, timestamp, duration)

𝐻𝑑 : keyboardPress(value)

We map the low-level events to high-level events using the fol-
lowing algorithm. Each low-level event of type 𝐿𝑎 is directly fol-
lowed by a low-level event of type 𝐿𝑏 . Based on this, AirMochi
identifies pairs of low-level events {𝑎, 𝑏} of types 𝐿𝑎 and 𝐿𝑏 , re-
spectively. Depending on the relationship between the two events’
attributes (x, y, timestamp), we map each pair {𝑎, 𝑏} to one of the
high-level UI events according to one of the following four cases:

(1) A high-level event of type 𝐻𝑎 is identified when the coor-
dinates of events 𝑎 and 𝑏 are the same, and the difference

between their timestamps is not greater than 500ms, which
is the default duration for generating long click on iOS [9].

(2) If the coordinates are the same but the difference in the
timestamps exceeds 500ms, then we identify a high-level
event of type 𝐻𝑏 .

(3) If coordinates of events 𝑎 and 𝑏 are different, then the high-
level event of type 𝐻𝑐 is identified.

(4) Low-level events of type 𝐿𝑐 are simply mapped to high-level
events of type 𝐻𝑑 .

The Event Sequence Translator then needs to map the absolute
coordinates to the GUI elements on the device on which AirMochi
was run. Before the execution of each of the UI events of type 𝐻𝑎

or 𝐻𝑏 , the Event Sequence Translator fetches the UI layout of the
currently visible screen. The fetched layout is in the form of a tree,
which is then traversed for finding the intended UI element. This is
done by finding the element in the deepest layer of the tree whose
boundaries contain the coordinates of the to-be-translated UI event.
Swipe events (𝐻𝑐) usually signify gestures generated on the screen
itself, rather than a specific UI element. For example, swipe from
left to right generates a "back" button functionality. Also, swipes
are used for scrolling over views. Thus, in the case of swipes, we are
not trying to find specific UI elements but are generating absolute-
coordinate events, since those will map to “swipe” functionality
regardless of the particular device. When it comes to the 𝐻𝑑 events,
we are directly generating keyboard events, since they are already
hardware-independent and there is no need to do any translation.

As its final output, the Event Sequence Translator component pro-
vides a hardware-independent, UI element-based test-case for each
recorded scenario comprising a sequence of low-level event logs.

Model Extractor
The Model Extractor component incrementally extracts a partial
behavioral model of an app that has been remotely executed us-
ing AirMochi. Our work to date has focused on generating the
models, in the manner described below. Our on-going work aims to
demonstrate that these models can be used for a range of analyses
previously developed for ensuring important properties of mobile
apps (e.g., correctness, reliability, and security [18]).

The behavioral model of an app extracted by AirMochi is rep-
resented in the form of a finite state machine. In this model, each
state, which we call a UI state, consists of the information regarding
the existing widgets on the currently visible screen, the values for
the existing widgets’ attributes, UI layout tree of the current screen,
and a screenshot from the current state of the app.The edges in the
model represent high-level UI events that result in transitions be-
tween states (as well as self-transitions). As discussed above, the UI
events can be of type click, longClick, swipe, and keyboardPress.

The process of model extraction is as follows. An app execution
session starts with the app being in its initial state, S0. The Model
Extractor component extracts the needed information for defining
the UI state S0. From S0, executing the high-level ev1, which is the
Event Sequence Translator’s first translated high-level event, tran-
sitions the app to UI state S1. Accordingly, in state S𝑁 , the Model
Extractor extracts the UI state information and by executing event
evN+1, transitions application to the UI state SN+1. After entering
each state, the Model Extractor determines whether this state has
been previously visited or a new node should be generated for the

state in the behavioral model. It does so by comparing the current
UI state with the existing states in the model. Depending on the
desired granularity of the model and the purpose of the analysis, the
comparison can look for exact matches or it can allow for approxi-
mate matches using a heuristic. In each step, the transition between
the two states is labeled by the executed high-level UI event.

Using the above algorithm, the Model Extractor creates a partial
behavioral model of the app from each of the previously executed
scenarios in the form of a statemachine. The different state-machine
models are then merged using well-known techniques to yield a
more complete and more informative model of the given app.

4 AIRMOCHI’s IMPLEMENTATION
AirMochi is implemented in≈3700 SLOC, spanning seven program-
ming languages with modules running on three different platforms.
The Utility Server from Figure 1 is an HTTP server implemented
in NodeJS. For simplicity, this server also hosts the User-Facing
Application in our current implementation. The Event Generator is
running on a Raspberry Pi Zero. In the implementation reported
in this paper, the Screen Transmitter component is running on the
Mobile Device and is implemented as a native iOS application. More
detailed explanations about each of AirMochi’s six principal com-
ponents are presented next.

User-Facing Application
The User-Facing Application combines HTML5 and multiple Java-
Script frameworks and libraries, mainly: Twilio Video [11], which
is an instantiation of the WebRTC real-time communication frame-
work [3]; jQuery; and SocketIO. The User-Facing Application cap-
tures and displays device-screen streams, captures UI events gen-
erated on top of the video stream DOM element, and sends the
generated events to the Utility Server (recall Figure 1). The User-
Facing Application is hosted on the same node as the Utility Server
in our current implementation of AirMochi.

Utility Server
We implemented the Utility Server from Figure 1 as a NodeJS ap-
plication that communicates with AirMochi’s Screen Transmitter ,
Event Generator , and User-Facing Applicationmodules throughWeb-
Sockets and HTTP requests.

Since we are relying on Twilio Video’s WebRTC implementation,
the Utility Server’s Screen Transmission Facilitator component is
implemented as an off-the-shelf functionality. The Utility Server is
in charge of the initial video stream set up, by distributing Twilio
Video’s access tokens needed for the establishment of the secure
connection between the Screen Transmitter (discussed below) and
the User-Facing Application.

The Event Transmission Facilitator is implemented as a Web-
Socket server that mediates messages between the Event Generator
(discussed below) and the User-Facing Application. The UI event
messages exchanged in that communication are encoded in JSON.

If session recording is in progress, the JSON messages are per-
sisted in the Internal Storage. The Internal Storage is implemented
as a set of JSON files, one for each recorded session.

Event Generator
iOS 13 introduced a new accessibility feature that allows users to
plug in standard peripheral devices—mouse and keyboard—and

control iPhones, iPads, and iPod touches. As shown in Figure 2, we
implement the Event Generator as a USB peripheral emulator that
physically connects to the iOS device, and is seen by the device as a
keyboard and a mouse. On the other end, the connection between
the Event Generator and the Utility Server is established through
WebSockets, where the Event Generator is a WebSocket client.

As mentioned above, we selected the Raspberry Pi Zero as the
Event Generator’s hardware platform. We did so because of its
ability to act as a USB peripheral and the availability of an of-the-
shelf Python implementation of the WebSocket client library for its
Raspbian operating system [10]. As shown in Figure 2, the Event
Generator is implemented using three layers: (1) Message Receiver,
(2) Message-to-Event Mapper, and (3) Event Executor.

TheMessage Receiver component implements aWebSocket client
and receives JSON-formatted event messages from theUtility Server .
Since those JSON messages do not have a 1-to-1 correspondence
with the mobile device events, they need to be translated by the
Message-to-Event Mapper component. For example, the iOS only
supports a relative mouse device. This means that we cannot gener-
ate a “screen touch” event at specific (𝑥,𝑦) coordinates on a device;
instead, we need to issue a series of low-level “move pointer” events
that will relocate the pointer from its original location to (𝑥,𝑦), and
follow it by a “click” event. Finally, the Event Executor component
executes thus generated events by writing byte arrays of specific
sizes to a binary file. This file represents the emulated USB device’s
buffer, from which the iOS device reads.

Screen Transmitter
After an extensive search for the solution that yields the best video
capture and streaming performance, we opted for developing the
Screen Transmitter as a native iOS app that relies on several different
frameworks. For increased flexibility, we have implemented the
Screen Transmitter app in both Swift and Objective-C.

Device-screen capture is based on Apple’s native ReplayKit
framework [2]. Specifically, it is implemented as a Broadcast Upload
application extension. This is Apple’s recommended way of imple-
menting screen-sharing functionality, since it is the only way an
app running in the background can acquire the screen. The trans-
mission of acquired video frames is achieved through WebRTC, a
real-time communication framework. Since the generic implemen-
tation ofWebRTC lacks off-the-shelf support for iOS screen sharing,
we used a specific instantiation of WebRTC, Twilio Video [11].

On application start-up, the Screen Transmitter acquires the
Twilio Video access token from the Utility Server (recall Figure 1)
and tries to connect to the video stream with the received token. If

 JSON

E
ve

nt
 E

xe
cu

to
r

M
es

sa
ge

-to
-E

ve
nt

M

ap
pe

r

M
es

sa
ge

 R
ec

ei
ve

r

..10110101.. WebSocket JSON

Utility
ServeriOS Device

WebSocket Client

UI Event
Message

UI Event

..10110101..

Figure 2: AirMochi’s Event Generator is implemented by
leveraging the iOS Accessibility Features.

the token is valid and the network connection stable, a stream is
opened. At this point, iOS starts publishing video frames that we are
capturing using the above-discussed Broadcast Upload extensions’s
callback. WebRTC allows control over the frame sizes. For example,
since newer iOS devices are of very high resolution, AirMochi
can downscale the frames’ sizes when used on slower networks to
ensure adequate user experience. Finally, the captured frames are
pushed to the video stream using the Twilio Video WebRTC API.

Event Sequence Translator
The Event Sequence Translator component is written in Python
and uses the Appium test automation framework [6]. Appium is
a cross-platform open-source tool for automating native, mobile
web, and hybrid applications on iOS, Android, and Windows desk-
top platforms. The Event Sequence Translator relies on Appium for
extracting the UI layout tree of the current device screen, via Ap-
pium’s getPageSource()method. The outputs of the Event Sequence
Translator component are GUI-based, hardware-independent test
cases for closed-source iOS apps. Specifically, the Event Sequence
Translator generates Appium test-cases written in Python.

Model Extractor
The Model Extractor component is also written in Python. Since
the Event Sequence Translator relies on Appium’s features, the
Model Extractor’s current implementation also relies on Appium’s
getPageSource()method to extract the information needed to define
a UI state. As its output, the Model Extractor component generates
a graph which is described in a graph description language (DOT)
that represents an app’s UI states and the transitions between them
in the form of a graph.

5 PRELIMINARY EMPIRICAL EVALUATION
The primary objective of our work to date has been to explore
different technologies that can be leveraged to build a solution
that relies only on publicly available device-accessibility features.
We discussed above how AirMochi’s design has aimed to address
our goals of efficiency, modularity, and extensibility. This section
describes our empirical evaluation of AirMochi’s effectiveness and
efficiency. We focus on two aspects of effectiveness: (1) applicability
to different mobile apps and scenarios and (2) accuracy. We evaluate
efficiency in terms of the latency introduced by AirMochi. We
note that the results we report here include but do not focus on
the specific impacts of the Event Sequence Translator and Model
Extractor components. These components are more recent additions
to AirMochi and their evaluation is part of our on-going work.

As a demonstration of AirMochi’s applicability, we selected ten
of the most widely used Apple App Store apps: Amazon, Costco,
Facebook, Instagram, Messenger, Netflix, Snapchat, TikTok, You-
Tube, and Zoom. We executed a variety of usage scenarios on these
apps, ranging from 12 to 48 UI events. To measure AirMochi’s
device-screen streaming performance, we monitored the video
stream latency, i.e., the time elapsed between capturing a frame on
the Mobile Device and displaying it in the User-Facing Application
(recall Figure 1). AirMochi’s video stream latency was on average
248ms, with all samples falling between 200ms and 300ms.

From the end-user’s perspective, AirMochi’s latency is virtu-
ally imperceptible since the use of our subject apps involves a fair
amount of “user think time” [19], which is on the order of seconds.

However, AirMochi would need to reach near-real-time respon-
siveness if we wanted to use it with highly interactive applications
such as games [5]. We believe that this is achievable since Air-
Mochi’s current, “proof of concept” implementation has not been
optimized. We see opportunities for performance improvements
by tailoring AirMochi’s streaming protocol to fit the nature of
specific use cases, by targeted uses of image downsampling, and by
employing unidirectional video streaming rather than the general
video conferencing currently supported by Twilio Video.

To evaluate AirMochi’s accuracy, we define True Positives as
events that are generated in the User-Facing Application, received
by the Event Generator , and executed successfully on the Mobile
Device (recall Figure 1). False Negatives are events generated in the
User-Facing Application and received by the Event Generator , but
not successfully executed on the device. Finally, False Positives are
either events that are never generated in the User-Facing Application
but are somehow executed on the device, or events that are executed
out of the original order in which they were generated. We have
not come across either of the False Positives cases throughout our
use of AirMochi, meaning that AirMochi’s Precision is 100%.

On the other hand, AirMochi’s Recall is not perfect. We man-
ually generated over 200 events across the ten subject apps. The
events were of different types, such as keyboard inputs, taps, double
taps, and swipes. We found that a small number of generated events
were not executed on the Mobile Device, yielding the Recall of just
above 96%. The events in question tended to be dropped regard-
less of whether they were generated manually in the User-Facing
Application or by the Utility Server when replaying a scenario.

We have identified the low-level event processing inAirMochi’s
implementation (recall Figure 2) as the likely cause of the dropped
events. Namely, certain events are simpler than others. For example,
keyboard inputs result in just one byte being written by the Rasp-
berry PI Zero, which acts as the Mobile Device’s USB peripheral.
Keyboard inputs did not result in False Negatives in any of our
tests. On the other hand, events such as taps and swipes are repre-
sented as series of bytes and do result in occasional False Negatives.
We believe that the hardware limitations of the Raspberry Pi Zero
are the potential reason for the dropped events. We continue to
explore hardware platforms that may give us better results without
sacrificing AirMochi’s other desired properties.

6 CONCLUSION
Remote access to mobile devices is attractive for a range of rea-
sons. Different solutions have tended to trade-off certain objectives
and resulting properties for others. This has been especially the
case with iOS, where the available solutions use various strategies
to bypass the tight controls imposed on the platform by Apple.
AirMochi has demonstrated that it is viable to use the public ac-
cessibility APIs to control an iOS device.

While AirMochi has been designed and implemented as a gen-
erally applicable proof-of-concept, we believe that it can be tailored
and optimized for a host of specific scenarios. We identified sev-
eral such scenarios in this paper. Our future work will also include
combining AirMochi’s record-and-replay capabilities with image
processing, to identify an app’s UI elements and support automated
testing without having to rely on Appium.

AirMochi can also be used for analysis on extracted app models,
including formally verifying a device’s susceptibility to security
attacks. Since AirMochi’s model is in the form of a state machine—
i.e. a graph—it is amenable to analysis by different graph traversal
algorithms and formal verification frameworks. For instance, a
vulnerability can be embodied in a state or a combination of states
in the model. A formal analysis framework can then be used to
look for paths on the behavioral model that satisfy the conditions
needed for the existence of that specific vulnerability type.

Furthermore, AirMochi’s platform-independence makes it use-
ful for generating similar models for different platforms. For exam-
ple, our work provides a promising opportunity to perform studies
on comparing security vulnerabilities in iOS and Android apps.

7 ACKNOWLEDGMENTS
This work is supported by the U.S. National Science Foundation
under grants 1717963 and 1823354, and U.S. Office of Naval Research
under grant N00014-17-1-2896.

REFERENCES
[1] 2014. Veency, Cydia. https://cydia.saurik.com/info/veency/
[2] 2017. ReplayKit: Apple Developer Documentation. https://developer.apple.com/

documentation/replaykit
[3] 2018. WebRTC. https://webrtc.org/
[4] 2019. WebDriverAgent on GitHub. https://github.com/facebookarchive/

WebDriverAgent
[5] 2019. Wowza - 2019 Video Streaming Latency Report. https://www.wowza.com/

blog/2019-video-streaming-latency-report
[6] 2020. Appium: Mobile App Automation Made Awesome. http://appium.io/
[7] 2020. Eggplant Software. https://www.eggplantsoftware.com/
[8] 2020. Getevent: Android Open Source Project. https://source.android.com/

devices/input/getevent
[9] 2020. LongPressIos. https://developer.apple.com/documentation/uikit/

uilongpressgesturerecognizer/1616423-minimumpressduration
[10] 2020. Raspberry Pi OS (previously called Raspbian). https://www.raspberrypi.

org/downloads/raspbian/
[11] 2020. Twilio Video: Video SDKs for iOS, Android, JavaScript and web-based

video. https://www.twilio.com/video
[12] 2020. W3C WebDriver. https://w3c.github.io/webdriver/
[13] Steven Arzt et al. 2014. FlowDroid: Precise Context, Flow, Field, Object-Sensitive

and Lifecycle-Aware Taint Analysis for Android Apps. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Edinburgh, United Kingdom) (PLDI ’14). Association for Computing Machinery,
New York, NY, USA, 259–269. https://doi.org/10.1145/2594291.2594299

[14] C. Bernal-Cárdenas et al. 2020. Translating Video Recordings of Mobile App
Usages into Replayable Scenarios. arXiv preprint arXiv:2005.09057 (2020).

[15] D. Geist, M. Nigmatullin, and R. Bierens. 2016. Jailbreak/Root Detection Evasion
Study on iOS and Android. MSc System and Network Engineering (2016).

[16] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. 2013. RERAN: Timing- and touch-
sensitive record and replay for Android. In 2013 35th International Conference on
Software Engineering (ICSE). 72–81.

[17] Heejin Kim et al. 2009. Performance testing based on test-driven development
for mobile applications. In Proceedings of the 3rd International Conference on
Ubiquitous Information Management and Communication. 612–617.

[18] Y. K. Lee, J. Y. Bang, G. Safi, A. Shahbazian, Y. Zhao, and N. Medvidovic. 2017.
A SEALANT for Inter-App Security Holes in Android. In 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). 312–323.

[19] J.W.Mickens et al. 2010. Crom: FasterWeb Browsing Using Speculative Execution.
In 2010 USENIX Symposium on Networked Systems Design and Implementation
(NSDI), Vol. 10. 9–9.

[20] T. A. Nguyen and C. Csallner. 2015. Reverse Engineering Mobile Application User
Interfaces with REMAUI (T). In 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 248–259.

[21] Z. Qin, Y. Tang, E. Novak, and Q. Li. 2016. MobiPlay: A Remote Execution
Based Record-and-Replay Tool for Mobile Applications. In 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE). 571–582.

[22] Wenyu Wang et al. 2018. An empirical study of android test generation tools in
industrial cases. In 2018 33rd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 738–748.

https://cydia.saurik.com/info/veency/
https://developer.apple.com/documentation/replaykit
https://developer.apple.com/documentation/replaykit
https://webrtc.org/
https://github.com/facebookarchive/WebDriverAgent
https://github.com/facebookarchive/WebDriverAgent
https://www.wowza.com/blog/2019-video-streaming-latency-report
https://www.wowza.com/blog/2019-video-streaming-latency-report
http://appium.io/
https://www.eggplantsoftware.com/
https://source.android.com/devices/input/getevent
https://source.android.com/devices/input/getevent
https://developer.apple.com/documentation/uikit/uilongpressgesturerecognizer/1616423-minimumpressduration
https://developer.apple.com/documentation/uikit/uilongpressgesturerecognizer/1616423-minimumpressduration
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.twilio.com/video
https://w3c.github.io/webdriver/
https://doi.org/10.1145/2594291.2594299

	Abstract
	1 Introduction
	2 Overview
	3 AirMochi's Design
	3.1 Remote Control of Mobile Devices
	3.2 Testing and Analysis of Mobile Apps

	4 AirMochi's Implementation
	5 Preliminary Empirical Evaluation
	6 Conclusion
	7 Acknowledgments
	References

