
FEAST’24: Sixth Workshop on Forming an Ecosystem Around
Software Transformation

Ryan Craven
Office of Naval Research
Arlington, Virginia, USA

ryan@rcraven.net

Matthew Mickelson
MITRE

McLean, Virginia, USA
mmickelson@mitre.org

Abstract
The Sixth Workshop on Forming an Ecosystem Around Software
Transformation (FEAST) revives the series, with the original five
events taking place from 2016-2020. FEAST is concerned with all
aspects of achieving effective, robust, and appraisable late-stage
transformation of software for security. Late-stage transformations
allow third parties to deeply tailor existing software to their mission,
customizing it with little to no access to source code or support
from the original developer.

Research has shown that late-stage software customization is of
particular benefit to security-conscious software consumers who
must use closed-source or source-free binary software components
in mission-critical settings, or who must harden software against
newly emerging attacks not anticipated during the software’s origi-
nal design and development. However, there is still a long way to go
toward achieving sound and robust transformations whose holis-
tic benefits to deployed software are fully appraisable. Motivated
by these outstanding challenges, FEAST continues in its goal to
form an active ecosystem of strategies and tools for accomplishing
source-free binary code transformation reliably and on-demand.

CCS Concepts
• Security and privacy→ Software and application security; •
Software and its engineering→ Software post-development
issues.

Keywords
binary software; software debloating; software de-layering; soft-
ware security hardening; binary rewriting; software transformation

ACM Reference Format:
Ryan Craven and Matthew Mickelson. 2024. FEAST’24: Sixth Workshop on
Forming an Ecosystem Around Software Transformation. In Proceedings of
the 2024 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3658644.3691553

1 Introduction
In 2024, software is more bloated than ever [8]. Since the most
recent FEAST in 2020, software size has continued to climb at an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3691553

exponential rate. The proliferation of "smart" features into every-
day consumer products has carried along with it a need for man-
ufacturers across all industries to rapidly ship complex software
functionality out to a host of cost-sensitive products. Nowhere has
the change been more dramatic than the auto industry, where even
low-end vehicles can have 100 ECUs and 100 million of lines of code,
and advances in autonomous driving functions hold the potential
for some new cars to push the 500 million lines of code mark [4].
That would place an amount of code equal to one quarter the size
of all the software running Google’s entire internet services catalog
ten years ago [11], into every family vehicle.

While economics have always driven developers to ship soft-
ware with lots of features for broad appeal, it is the advancement
of efficient and easy-to-use code reuse practices along with the
powerful gains they deliver to programmer productivity that en-
able the explosive growth we see. We find it important to stress
that maximizing code reuse is not itself a bad thing: Consumers
and businesses benefit from a rapid pace of less expensive, more
feature-rich products, and developers spend their limited time more
efficiently. But there is a growing problem that security-conscious
consumers know all too well: Most of the code in any modern sys-
tem is unnecessary or even potentially undesirable to its users [12].
One study found that, on average, only 10% of the functions in the
most frequently used shared libraries in Ubuntu are ever invoked
by common programs [13].

Identifying when unneeded or undesirable code is being added
to a system is difficult, due in large part to an enormous amount of
complexity that gets hidden behind slick abstractions: frameworks,
middlewares, container orchestration, and so many libraries that
today’s popular languages all need their own package managers
just to make things manageable [7]. We expect these conditions
will persist, as the cost of the complexity seems cheap compared to
the value gained. The costs, however, are only thought to be cheap
because the market measures them at development time, where all
the benefits (increased productivity resulting from the code reuse
and abstractions) are being gained.

The follow-on costs (increased maintenance, features that later
become bugs, expanded attack surfaces, and opaque software supply
chains) are difficult to capture, and varyingly affect different seg-
ments of consumers. FEAST is a recognition of these costs. Rather
than fight market forces directly, which is unlikely to be effective,
the FEAST Workshop is devoted to improving the feasibility and
effectiveness of late-stage software transformation. Late-stage trans-
formations modify low-level software after it has been designed,
developed, and compiled into a distributable product. Such tech-
nologies offer consumers the ability to customize software to their
particular requirements, such as by removing unneeded features,
stripping out unnecessary complexity, or adding hardened security

https://doi.org/10.1145/3658644.3691553
https://doi.org/10.1145/3658644.3691553


CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ryan Craven and Matthew Mickelson

defenses against dangerous attacks. Source-free software transfor-
mation challenges of particular interest include:

• software debloating, which concerns the removal of soft-
ware behaviors, code, or data that is unneccessary for a given
consumer’s needs;

• software de-layering, which removes levels of indirection
or abstraction layers that impede efficiency;

• software security hardening, which concerns adding extra
security checks and other defenses to code in order to thwart
attacks;

• post-deployment patching, which allows binary code to
be more easily modified to replace or remove functionalities;

• attack surface discovery and reduction, which discovers
and mitigates potential opportunities for abuse and compro-
mise of binary software products;

• software self-healing, which transforms software to detect
and remediate faults unanticipated by its authors;

• transformation-aware reverse-engineering, which lifts
low-level software to a higher-level form amenable to analy-
sis, transformed, and then lowered back to executable form
without sacrificing efficiency; and

• low-level formal methods, which extend automated theo-
rem proving, model-checking, and type-based verification
typically used at the source level for high assurance code
down to executable binaries.

The goal of FEAST is to cultivate a robust ecosystem of these and
other technologies relevant to practical, effective customization of
binary software without the aid of source code or developer support.

1.1 The Continuing Need for FEAST
Since the most recent FEAST in 2020, numerous major events con-
tinue to motivate our vision. In 2021, an obscure feature added to
the Log4j library almost eight years prior triggered a global cyberse-
curity emergency [5]. The cause was due to one user of the library
adding a feature (support for JNDI lookups) to make their life more
convenient, and their patch was committed by the maintainers less
than 24 hours later [1].

Seeing the lack of scrutiny going into widespread code reuse,
attackers began more heavily targeting overworked package main-
tainers [6], leading to a coordinated multi-year operation against
the maintainer of XZ Utils compression library [2]. The Sunburst
malware was discovered to have been hiding in Solarwinds Orion,
a software product intended to improve security, for months unde-
tected [14]. And unnecessary support for obscure image formats
led to a zero-click vulnerability in iMessage [3].

The rapid and pervasive adoption of AI coding assistants is al-
ready having broad effects on how software is built and deployed [9].
One possibility is that complexity and opacity increase another level
as the new technology leads to changes in behaviors. For instance,
LLM hallucinations of package library names were observed be-
ing used in the wild [10]. As we progress toward FEAST’s goal of
practical and effective customization of binary software, consumers
that bear a larger burden from the offset costs of increasing size
and complexity will benefit as they become empowered to exert
more rigor over and reshape the software they deploy.

2 Sixth Workshop Program
The sixth FEAST workshop consists of four full paper presentations,
and ten talk proposal presentations. Only full papers were entered
into official proceedings. The talk proposal was a lighter-lift sub-
mission type we created to incorporate more diverse perspectives.
The acceptance rate was 93%, with many submissions being of high
quality and relevant to scope. The presentations are organized into
four sessions, each with a different theme tied to a property about
late-stage transformations that we seek to improve: Soundness,
Robustness, Appraisability, and Enabling Technology.

3 Workshop Organization
The following program committee members helped organize the
2024 FEAST Workshop:

• Ryan Craven (Office of Naval Research)
• Matthew Mickelson (MITRE)
• Jason Li (Trusted ST)
• Sukarno Mertoguno (Georgia Tech)
• Daniel Koller (Pennsylvania State University)
• Nathan Burow (MIT Lincoln Laboratory)

4 Acknowledgments
The workshop chairs for FEAST’24 wish to thank all authors for
submitting papers, as well as past chairs Taesoo Kim, Dinghao
Wu, Yan Shoshitaishvili, Mayur Naik, Adam Doupé, Zhiqiang Lin,
Long Lu, and Kevin Hamlen for their stewardship of the FEAST
community over the years.

References
[1] Apache. 2013. JNDI Lookup plugin support. ASF JIRA, https://issues.apache.org/

jira/browse/LOG4J2-313.
[2] Fred Bals. 2024. What is the Xz Utils Backdoor: Everything you need to know

about the supply chain attack. Synopsys Blog, https://www.synopsys.com/blogs/
software-security/xz-utils-backdoor-supply-chain-attack.html.

[3] Ian Beer and Samuel Gross. 2021. A deep dive into an NSO zero-click iMessage
exploit: Remote Code Execution. Google Project Zero (2021).

[4] Robert Charette. 2021. How Software is Eating the Car. IEEE Spectrum (2021).
[5] CISA. 2021. Mitigating Log4Shell and Other Log4j-Related Vulnerabilities. Cyber-

security Advisory, https://www.cisa.gov/news-events/cybersecurity-advisories/
aa21-356a.

[6] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltaformag-
gio, and Wenke Lee. 2021. Towards Measuring Supply Chain Attacks on Package
Managers for Interpreted Languages. In NDSS.

[7] Johannes Düsing and Ben Hermann. 2022. Analyzing the Direct and Transitive
Impact of Vulnerabilities onto Different Artifact Repositories. Digital Threats 3,
4 (2022).

[8] Bert Hubert. 2024. Why Bloat is Still Software’s Biggest Vulnerability: A 2024
plea for lean software. IEEE Spectrum 61, 4 (2024), 22–50.

[9] Jan H. Klemmer, Stefan Albert Horstmann, Nikhil Patnaik, Cordelia Ludden,
Cordell Burton Jr, Carson Powers, Fabio Massacci, Akond Rahman, Daniel
Votipka, Heather Richter Lipford, Awais Rashid, Alena Naiakshina, and Sascha
Fahl. 2024. Using AI Assistants in Software Development: A Qualitative Study
on Security Practices and Concerns. In ACM CCS 2024.

[10] Bar Lanyado. 2024. Diving Deeper into AI Package Hallucinations. Lasso Security
Blog, https://www.lasso.security/blog/ai-package-hallucinations.

[11] Rachel Potvin. 2015. Why Google Stores Billions of Lines of Code in a Single
Repository. Systems @Scale, https://youtu.be/W71BTkUbdqE.

[12] Anh Quach, Rukayat Erinfolami, David Demicco, and Aravind Prakash. 2017. A
Multi-OS Cross-Layer Study of Bloating in User Programs, Kernel and Managed
Execution Environments. In Proceedings of the 2017 Workshop on Forming an
Ecosystem Around Software Transformation (FEAST ’17).

[13] Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating software through
Piece-Wise compilation and loading. In 27th USENIX security symposium (USENIX
Security 18).

[14] Kim Zetter. 2023. The Untold Story of the Boldest Supply-Chain Hack Ever.
Wired (2023).

https://issues.apache.org/jira/browse/LOG4J2-313
https://issues.apache.org/jira/browse/LOG4J2-313
https://www.synopsys.com/blogs/software-security/xz-utils-backdoor-supply-chain-attack.html
https://www.synopsys.com/blogs/software-security/xz-utils-backdoor-supply-chain-attack.html
https://www.cisa.gov/news-events/cybersecurity-advisories/aa21-356a
https://www.cisa.gov/news-events/cybersecurity-advisories/aa21-356a
https://www.lasso.security/blog/ai-package-hallucinations
https://youtu.be/W71BTkUbdqE

	Abstract
	1 Introduction
	1.1 The Continuing Need for FEAST

	2 Sixth Workshop Program
	3 Workshop Organization
	4 Acknowledgments
	References

